Course Website: www.artbotics.org

Class Meetings:
Lectures Tuesday and Thursday, 9:30am – 10:45 am
Olsen 403

Labs Tuesday or Thursday, 11:00am - 12:15pm
Olsen 302

Instructors:
Prof. Ellen Wetmore
Office: Dugan B19
Phone: 978-934-3468 (office)
Email: ellen_wetmore@uml.edu (best way to reach me)
Office Hours: Tuesdays/Thursdays 2-3pm and by appointment

Prof. Holly Yanco
Office: Olsen 206
Phone: 978-934-3642 (office)
Email: holly@cs.uml.edu (best way to reach me)
Office Hours: Mondays 9-10 and 1:30-2:30, Tuesdays 8:30-9:30, and by appointment

Adam Norton
Office: Olsen 304
Phone: 978-855-8157 (cell)
Email: anorton@cs.uml.edu (best way to reach me)
Office Hours: by appointment

Important Date: The opening exhibition for the final projects will be held on Friday, December 7 from 5-7pm at the 119 Gallery. Attendance is mandatory. Arrange your schedules now.

Course Description
Artbotics focuses on exploring the intersections between art, computer science, and robotics. The course is project-driven and includes public exhibitions. You will learn founding principles in both the fields of art and computer science, then put them into practice by creating interactive, tangible exhibits that are displayed in public settings. The course will also include guest lectures from practitioners in the fields.

Class will consist of two 75 minute lectures each week (Tuesdays and Thursdays 9:30am – 10:45 am in Olsen 403) and a 1 hour and 15 minute lab (Tuesday or Thursday, 11:00am - 12:15pm). The lab will meet in Olsen 302. Lab attendance is required; see the attendance policy below.
The curriculum includes the following topics:

(Hybrid Core)
- Historic and contemporary practices in the collaboration of science and technology.
- Problem-solving process of engineering and art – its commonality and difference.
- Sustainable community through art, science and technology, and education.

(CS and Robotics Core)
- Introduction to imperative programming: functions, arguments and return values.
- Introduction to real-time systems including sensors, actuators and control loops.
- Agent-based models of computing (sense-act loops).
- Elements of robotics systems and how to physically create them (e.g., wiring and construction techniques).
- Uses of computing in a variety of fields.

(Art Core)
- Introduction to New Media Art: Historic background, development and themes.
- Examination of form and content – use of visual language to support communicative issues such as concept, content and subject matter; the interplay between media and idea.
- Traditional visual language – aesthetics in color, composition, value, texture and material.
- New media language – aesthetics in time, motion, space, interactivity and hybrid media.

Objectives

By the conclusion of the semester, students will:

(CS and Robotics related)
- Have hands-on experience with embedded computing and digital technology.
- Gained the ability to formulate structured algorithms and program them.
- Understand use of sensors and interactive algorithms.
- Carry out a project from inception to public exhibition that incorporates computing.
- Understand how computing is used in a variety of fields and applications.

(Art related)
- Acquire the understanding of New Media art and be able to, historically and conceptually, contextualize your own artwork in the art world.
- Have examined principles of aesthetic and conceptual elements in visual art and be able to find strategies for a successful and engaging art expression.
- Have investigated examples of art and technology collaboration especially in public domain.
- Evaluate new media art works in various contexts including gallery or public installation.

Materials we will provide:
1. Lab kit: You will be loaned a lab kit for the semester that includes a SuperCricket, sensors and motors. You need to bring this kit to each week's lab. On the last day of the semester, you will return the lab kit. **Failure to return the kit will result in no grade being entered for the term.** Each lab kit has numbered parts with the kit ID number; please do not mix kit parts with your friends.
2. Art supplies for the introductory labs.
3. Any additional sensors or motors needed for your projects.

Materials you need to provide
1. Portable digital storage media to save your programs in the lab
2. Sketch book for class notes, sketching ideas, and documenting your process throughout the semester
3. Art supplies needed to create your project
Requirements & Assignments: Each student is expected to complete all of the assignments, required readings and projects on time as well as full attendance in the lectures and labs. During discussion and lectures students are expected to engage in meaningful classroom participation. No late assignments will be accepted.

Your work in class will include labs, readings, an artist presentation, the final project, documentation of the final project, and class participation.

Labs: At the start of the semester, there will be weekly labs, as follows:
- Lab 1, week of 9/13: 2D Art
- Lab 2, week of 9/20: Crickets, light and touch sensors, and lights
- Lab 3, week of 9/27: Cricket cars, touch sensors, DC motors
- Lab 4, week of 10/4: Gears and mechanisms
- Lab 5, part 1, week of 10/11: 3D art with motors: start of mini-project
- Lab 5, part 2, week of 10/18: Continued work on mini-project

The remainder of the lab sessions will be devoted to work on your final projects.

Lab work will be introduced in the lab session and you will have the opportunity to work with one of the instructors present during this lab session. If you do not complete the lab assignment during the two hours, you will need to finish it on your own. Expect some of the lab assignments to take more than two hours. The weekly lab assignments will contain instructions on what to write up and submit for the week’s lab. The lab’s report will be due at the start of the next week’s lab.

Reading and browsing assignments: These will be given often for discussion in later classes.

Artist presentation: For this presentation, you will investigate the ideas and practice of new media art. You will select an artist who uses technology as a vehicle of expression and creativity (a list of artists will be provided). You should focus on the chosen artist’s concept, technological medium and the process of art making with a few examples of the artist’s best known works. You will give a 10 minute oral and visual presentation between November 13 and November 20; dates will be assigned.

Final project: The culmination of the course is the creation of an interactive work of art that incorporates robotic technology. Brainstorming for the project will occur in class on September 27 at the 119 Gallery. Your project proposals are due on October 11. Project building and programming will be done in five lab weeks, as well as outside of class. On December 7, there will be a gallery opening from 5-7pm for your projects; attendance is mandatory. More detail on the project process will be distributed in mid-September.

Attendance Policy and Class Participation: Attendance is mandatory. Your participation in the form of regular attendance and involvement in discussion/critiques is not only desired but also required. You will be expected to attend all class meetings on time and stay for the entire class. Students are expected to utilize lab time and will be counted as absent or tardy (unless approved by the instructor); failure to attend labs or to arrive on time will affect your class participation grade. Class lectures and demonstrations cannot be repeated.

Grading: Projects, lab assignments, homework, attendance and participation will all play roles in the determination of your final grade.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>25%</td>
</tr>
<tr>
<td>Artist presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Final project</td>
<td>40%</td>
</tr>
<tr>
<td>Final project report</td>
<td>15%</td>
</tr>
<tr>
<td>Class participation</td>
<td>10%</td>
</tr>
</tbody>
</table>